Numerical Study of the Effects of Aerosols and Irrigation on Snow, Rain, and Regional Climate in California

Mark Z. Jacobson

Atmosphere/Energy Program

Dept. of Civil & Environmental Engineering

Stanford University

3rd Annual Climate Change Research Conference California Energy Commission Sept. 14, 2006

Model Grids Treated for California Case

GATOR-GCMOM

Cloud processes Time-dependent 3-D size-res. clouds Liquid/ice growth on aerosol particles Liquid drop freezing/breakup Hydrometeor-hydrometeor coagulation Hydrometeor-aerosol coagulation Precipitation, aer./gas rainout/washout Below-cloud evaporation/melting Lightning from collision bounceoffs Radiative transfer UV/visible/near-IR/thermal-IR Gas/aerosol/cloud scat./absorption Predicted snow, ice, water albedos Surface processes Soil, water, snow, sea ice, vegetation, road, roof temperatures/moisture Ocean 2-D dynam., 3-D diffus/chem.

Ocean-atmosphere exchange

Model Versus Data (EPA)

Model Versus Measured Surface Solar Radiation

Modeled vs. Measured Feb. 1999 Precip.

Data from Western Reg. Clim. Ctr. Prepared by G. Lopez, G. Franco,

Feb. Snow; BC/SoilDust in Snow/Aer

Feb. Alb. and Diff. Due to Snow Abs.

BC and soil dust absorption in snow reduced Feb. snow albedo by 0.32%

Feb. Snow Depth, Diff. Due to Abs.

BC and soil dust absorption in snow reduced snow depth by 0.5%

Feb. Soil Moist, Diff. Due to Abs.

BC and soil dust absorption in snow increased surface soil moisture by 0.07%

Feb. Water Vapor, RH Diff. due to Absorption

BC and soil dust absorption in snow increased water vapor 0.1% and RH 0.04%

Surface Temperature Diff. Due to BC+Soildust Absorption in Snow

BC and soil dust absorption in snow increased surface temperature by 0.011 K

Agriculture Fraction and Irrigation Rate (for one day)

Data from USGS (1999) Combination of 5 agric. classes

Data from Salas et al. (2005)

Soil Moist/WatVap/RH/Prec. Diffs. From Irrig.

Cloud OD/Fract, Surface Sol/IR Diffs

Air Temp Diffs. Due to Irrig. v. Aer.

Albedo Change Due to Agriculture

Air Temperature Change Due to Irrig. Only and due to Irrig+Albedo

Aug. Diff. in Rainwater BC and Aer. Number >100 nm due to Irrigation

Aug. Difference in Aerosol S(VI) and Liquid Water Due to Irrigation

Baseline AOD and AOD Difference Due to Irrigation

Ozone, OH, NO₂, Toluene Diffs.

February Effects in California of BC and Soildust Absorption in Snow

Increased surface temperature over land by 0.011 K

Reduced snow albedo by 0.3%

Reduced snow depth by 0.5%

Increased near-surface soil moisture by 0.07%

Increased near-surface water vapor over land by 0.1%

Increased the near-surface relative humidity over land by 0.04%

August Effects of Irrigation in Calif.

```
Increased (over land)
       soil moisture by 0.78% (0.016 m<sup>3</sup>/m<sup>3</sup>)
       near-surface water vapor by 0.25%
       the relative humidity by 0.12%
       cloud optical depth by 1.4%
       cloud fraction by 0.93%
       precipitation (fog deposition) by 2.2%
       surface thermal-IR by 0.21% (+0.18 W/m<sup>2</sup>)
       near-surface air temperature by 0.009 K
               (greater incs. in night mins than decs. in day maxs)
               (compares with -0.006 K when include ag. albedo)
               (compares with -0.21 K due to aerosol particles)
       near-surface OH by 0.12%
       near-surface ozone by 0.06% (+0.025 ppbv)
```

August Effects of Irrigation in Calif.

Decreased (over land)

```
surface solar radiation by 0.08% (0.20 W/m²)
aerosol optical depth by 0.83%
aerosol number by 0.5%
aerosol sulfate mass by 0.68%
aerosol soildust mass by 2.7%
larger than precip. increase because irrigation and precip. reduced wind-blown soildust emissions too. aerosol LWC by 1.8%
nitrogen dioxide by 0.58%
toluene by 0.76%
```